
Lossy Image Compression for Continuous Tone Graphical Images

Lossy Image Compression for Continuous Tone
Graphical Images

T. Vrind and K. Ramathreya
Advisor Dr. P. K. Mahanti
Department of Computer Science and Engineering
Birla Institute of Technology, Mesra, Ranchi, India

INTRODUCTION

Programs using complex graphics are showing up in virtually every area of computing
applications; games, education, desktop publishing, and graphical design, just to mention
a few. These programs have one factor in common. The images they use consume
prodigious amounts of disk storage. In the IBM world, for example, the VGA display is
probably the current lowest common denominator for high-quality color graphics. VGA
displays 256 simultaneous colors selected from a palette of 262,144 colors. This lets the
VGA display continuous tone images, such as color photographs, with a reasonable
amount of fidelity. The problem with using images of photographic quality is the amount
of storage required to use them in a program. For the previously mentioned VGA, a 256-
color screen image has 200 rows of 320 pixels, each consuming a single byte of storage.
This means that a single screen image consumes a minimum of 64K! It isn't hard to
imagine applications that would require literally hundreds of these images to be accessed.
The above discussion shows explicitly the very important use of image compression
techniques to the different applications. Image compression on one hand saves valuable
memory space for storage of continuous tone images, on the other hand it serves for
transfer of still as well as video images between computers. In our project titled
"SIMULATING IMAGE COMPRESSION" we wish to implement and discuss the use of
lossy compression techniques (similar to the JPEG compression techniques and
algorithms) to achieve very high levels of compression on continuous tone graphical
images, such as digitized images of photographs. We planned to complete this project in
two phases (2 semesters). In the first phase (i.e VIth Semester) we studied the
compression techniques as given by JPEG and successfully implemented the DCT
transformation, (using Fast Fourier Transformations), Inverse DCT Transformation and
Quantization. The final part of Image compression i.e lossy compression of .GS files of
the images and development of the interfaces for the compression of this image files was
dealt with in the second phase of the our project .All the coding in the project has been
done in the language `C'.

Lossy Image Compression for Continuous Tone Graphical Images

DESIGN
The design approach to this project is same as that of the JPEG algorithm. The
image is taken in form of a black and white or a gray scale file. It is a normal text
file with a ".gs" type extension name, consisting of a 320 by 200 matrix of pixel
values .The various transformations and approximations are applied to the "*.gs"
file and a smaller memory size requirement for the image is found without
degrading the quality of the image.

REQUIREMENTS
Hardware & Software requirements:
• Processor (Pentium I or above).
• 50 MB of free-space (for image files and compressing programs).
• Window 95 with 256 colors.
• MS Word for Documentation.
• SVGA if available.
• Scanner if available for scanning of the image to be compressed.

JPEG COMPRESSION

JPEG (pronounced "jay-peg") is a standardized image compression mechanism.
JPEG stands for Joint Photographic Experts Group, the original name of the
committee that wrote the standard.

JPEG is designed for compressing either full-color or gray-scale images of
natural, real-world scenes. It works well on photographs, naturalistic artwork,
and similar material; not so well on lettering, simple cartoons, or line drawings.
JPEG handles only still images, but there is a related standard called MPEG for
motion pictures.

JPEG is "lossy," meaning that the decompressed image isn't quite the same as the
one you started with. (There are lossless image compression algorithms, but
JPEG achieves much greater compression than is possible with lossless methods.)
JPEG is designed to exploit known limitations of the human eye, notably the fact
that small color changes are perceived less accurately than small changes in
brightness. Thus, JPEG is intended for compressing images that will be looked at
by humans. If one plans to machine-analyze the images, the small errors
introduced by JPEG may be a problem, even if they are invisible to the eye.

A useful property of JPEG is that the degree of lossiness can be varied by
adjusting compression parameters. This means that the image maker can trade off
file size against output image quality. You can make *extremely* small files if

Lossy Image Compression for Continuous Tone Graphical Images

you don't mind poor quality; this is useful for applications such as indexing image
archives. Conversely, if you aren't happy with the output quality at the default
compression setting, you can jack up the quality
until you are satisfied, and accept lesser compression.

Another important aspect of JPEG is that decoders can trade off decoding speed
against image quality, by using fast but inaccurate approximations to the required
calculations. Some viewers obtain remarkable speedups in this way. (Encoders
can also trade accuracy for speed, but there's usually less reason to make such a
sacrifice when writing a file.)

USE OF JPEG

There are two good reasons for using JPEG:
• To make image files smaller
• To store 24-bit-per-pixel color data instead of 8-bit-per-pixel data.

Making image files smaller is a win for transmitting files across networks and for
archiving libraries of images. Being able to compress a 2 Mbyte full-color file
down to, say, 100 Kbytes makes a big difference in disk space and transmission
time! . Thus using JPEG is essentially a time/space tradeoff: one gives up some
time in order to store or transmit an
image more cheaply. But it's worth noting that when network transmission is
involved, the time savings from transferring a shorter file can be greater
than the time needed to decompress the file.

The second fundamental advantage of JPEG is that it stores full color information:
24 bits/pixel (16 million colors). GIF, the other image format widely used on the
net, can only store 8 bits/pixel (256 or fewer colors). GIF is reasonably well
matched to inexpensive computer displays --- most run-of-the-mill PCs can't
display more than 256 distinct colors at once. But full-color hardware is getting
cheaper all the time, and JPEG photos look *much* better than GIFs on such
hardware. Within a couple of years, GIF will probably seem as obsolete as black-
and-white MacPaint format does today. Furthermore, JPEG is far more useful
than GIF for exchanging images among people with widely varying display
hardware, because it avoids prejudging how many colors to use . Hence JPEG is
considerably more appropriate than GIF for use as a Usenet and World Wide Web
standard photo format.

Lossy Image Compression for Continuous Tone Graphical Images

A lot of people are scared off by the term "lossy compression". But when it
comes to representing real-world scenes, *no* digital image format can retain all
the information that impinges on the eyeball. By comparison with the real-world
scene, JPEG loses far less information than GIF.
The real disadvantage of lossy compression is that if one repeatedly compresses
and decompresses an image, one loses a little more quality each time. This is a
serious objection for some applications but matters not at all for many others.

JPEG is *not* going to displace GIF entirely; for some types of images, GIF is
superior in image quality, file size, or both. One of the first things to learn about
JPEG is which kinds of images to apply it to.

Generally speaking, JPEG is superior to GIF for storing full-color or gray-scale
images of "realistic" scenes; that means scanned photographs continuous-tone
artwork, and similar material. Any smooth variation in color, such as occurs in
highlighted or shaded areas, will be represented more faithfully and in less space
by JPEG than by GIF.

GIF does significantly better on images with only a few distinct colors, such as
line drawings and simple cartoons. Not only is GIF lossless for such images, but
it often compresses them more than JPEG can. For example, large areas of pixels
that are all *exactly* the same color are compressed very efficiently indeed by
GIF. JPEG can't squeeze such data as much as GIF does without introducing
visible defects. (One implication of this is that large single-color borders are quite
cheap in GIF files, while they are best avoided in JPEG files.)

Computer-drawn images, such as ray-traced scenes, usually fall between
photographs and cartoons in terms of complexity. The more complex and subtly
rendered the image, the more likely that JPEG will do well on it. The same goes
for semi-realistic artwork (fantasy drawings and such). But icons that use only a
few colors are handled better by GIF.

JPEG has a hard time with very sharp edges: a row of pure-black pixels adjacent
to a row of pure-white pixels, for example. Sharp edges tend to come out blurred
unless you use a very high quality setting. Edges this sharp are rare in scanned
photographs, but are fairly common in GIF files: consider borders, overlaid text,
etc. The blurriness is particularly
objectionable with text that's only a few pixels high. Most recent JPEG software
can deal with textual comments in a JPEG file, although older viewers may just
ignore the
comments.

Lossy Image Compression for Continuous Tone Graphical Images

Plain black-and-white (two level) images should never be converted to JPEG;
they violate all of the conditions given above. One needs at least about 16 gray
levels before JPEG is useful

for gray-scale images. It should also be noted that GIF is lossless for gray-scale
images of up to 256 levels, while JPEG is not.

If one has a large library of GIF images, one may want to save space by
converting the GIFs to JPEG. This is trickier than it may seem --- even when the
GIFs contain photographic images, they are actually very poor source material for
JPEG, because the images have been color-reduced. Non-photographic images
should generally be left in GIF form. Good-quality photographic GIFs can often
be converted with no visible quality loss, but only if one knows what one is doing
and one takes the time to work on each image individually. Otherwise it is likely
to lose a lot of image quality or waste a lot of disk space ... quite possibly both.

How well does JPEG compress images
Very well indeed, when working with its intended type of image (photographsand
suchlike). For full-color images, the uncompressed data is normally 24 bits/pixel.
The best known lossless compression methods can compress such data about 2:1
on average. JPEG can typically achieve 10:1 to 20:1 compression without visible
loss, bringing the effective storage requirement down to 1 to 2 bits/pixel. 30:1 to
50:1 compression is possible with small to moderate defects, while for very-low-
quality purposes such as previews or archive indexes, 100:1 compression is quite
feasible. An image compressed 100:1 with JPEG takes up the same space as a
full-color one-tenth-scale thumbnail image, yet it retains much more detail than
such a thumbnail.

For comparison, a GIF version of the same image would start out by sacrificing
most of the color information to reduce the image to 256 colors (8 bits/pixel).
This provides 3:1 compression. GIF has additional "LZW" compression built in,
but LZW doesn't work very well on typical photographic data; at most one may
get 5:1 compression overall, and it's not at all uncommon for LZW to be a net loss
(i.e., less than 3:1 overall compression). LZW *does* work well on simpler
images such as line drawings, which is why GIF handles that sort of image so
well. When a JPEG file is made from full-color photographic data, using a
quality setting just high enough to prevent visible loss, the JPEG will typically be
a factor of four or five smaller than a GIF file made from the same data.

Gray-scale images do not compress by such large factors. Because the human eye
is much more sensitive to brightness variations than to huge variations JPEG can
compress hue data more heavily than brightness (gray-scale) data. A gray-scale
JPEG file is generally only about 10%-25% smaller than a full-color JPEG file of

Lossy Image Compression for Continuous Tone Graphical Images

similar visual quality. But the uncompressed gray-scale data is only 8 bits/pixel,
or one-third the size of the color data, so the calculated compression ratio is much
lower. The threshold of visible loss is often around 5:1 compression for gray-
scale images.

The exact threshold at which errors become visible depends on viewing
conditions. The smaller an individual pixel, the harder it is to see an error; so
errors are more visible on a computer screen (at 70 or so dots/inch) than on a
high-quality color printout (300 or more dots/inch). Thus a higher-resolution
image can tolerate more compression ... which is fortunate considering it's much
bigger to start with. The compression ratios quoted above are typical for screen
viewing. Also note that the threshold of visible error varies considerably across
images.

"Quality" settings for JPEG
Most JPEG compressors lets one pick a file size vs. image quality tradeoff by
selecting a quality setting. There seems to be widespread confusion about the
meaning of these settings. "Quality 95" does NOT mean "keep 95% of
theinformation", as some have claimed. The quality scale is purely arbitrary; it's
not a percentage of anything.

In fact, quality scales aren't even standardized across JPEG programs. For
example:

• Apple used to use a scale running from 0 to 4, not 0 to 100.
• Recent Apple software uses an 0-100 scale that has nothing to do with
• the IJG scale (their Q 50 is about the same as Q 80 on the IJG scale).
• Paint Shop Pro's scale is the exact opposite of the IJG scale, PSP
• setting N = IJG 100-N; thus lower numbers are higher quality in PSP.
• Adobe Photoshop doesn't use a numeric scale at all, it just gives

"high"/"medium"/"low" choices.

Fortunately, this confusion doesn't prevent different implementations from
exchanging JPEG files. But one does need to keep in mind that quality scales
vary considerably from one JPEG-creating program to another, and that just
saying "I saved this at Q 75" doesn't mean a thing if one does noy say which
program he has used.

In most cases the user's goal is to pick the lowest quality setting, or smallest file
size, that decompresses into an image indistinguishable from the original. This

Lossy Image Compression for Continuous Tone Graphical Images

setting will vary from one image to another and from one observer to another, but
here are some rules of thumb.

For good-quality, full-color source images, the default qIuality setting is very
often the best choice. This setting is about the lowest one can go without
expecting to see defects in a typical image.

If the image was less than perfect quality to begin with, one might be able to drop
down to lower quality without objectionable degradation. On the other hand, one
might need to go to a *higher* quality setting to avoid further loss. This is often
necessary if the image contains dithering or moire patterns

Except for experimental purposes, never go above about Q 95; using Q 100 will
produce a file two or three times as large as Q 95, but of hardly any better quality.
Q 100 is a mathematical limit rather than a useful setting. If one sees a file made
with Q 100, it's a pretty sure sign that the maker didn't know what he/she was
doing.

If one wants a very small file (say for preview or indexing purposes) and is
prepared to tolerate large defects, a Q setting in the range of 5 to 10 is about right.
Q 2 or so may be amusing as "op art". (It's worth mentioning that the current IJG
software is not optimized for such low quality factors. Future versions may
achieve better image quality for the same file size at low quality settings.)

If image contains sharp colored edges, one may notice slight fuzziness or
jagginess around such edges no matter how high one make the quality setting.
This can be suppressed, at a price in file size, by turning off chroma
downsampling in the compressor. The IJG encoder regards downsampling as a
separate option which you can turn on or off independently of the Q setting. Other
JPEG implementations may or may not provide user control of

downsampling. Adobe Photoshop, for example, automatically switches off
downsampling at its higher quality settings. On most photographic images, we
recommend leaving downsampling on, because it saves a significant amount of
space at little or no visual
penalty.

For images being used on the World Wide Web, it's often a good idea to give up a
small amount of image quality in order to reduce download time. Quality settings
around 50 are often perfectly acceptable on the Web. In fact, a user viewing such
an image on a browser with a 256-color display is unlikely to be able to see any
difference from a higher quality setting, because the browser's color quantization
artifacts will swamp any imperfections in the JPEG image itself. It's also worth
knowing that current progressive-JPEG-making programs use default progression

Lossy Image Compression for Continuous Tone Graphical Images

sequences that are tuned for quality settings around 50-75: much below 50, the
early scans will look really bad, while much above 75, the later scans won't
contribute anything noticeable to the picture.

Loss accumulatation with repeated compression/decompression

It would be nice if, having compressed an image with JPEG, you could
decompress it, manipulate it (crop off a border, say), and recompress it without
any further image degradation beyond what you lost initially. Unfortunately THIS
IS NOT THE CASE. In general, recompressing an altered image loses more
information. Hence it's important to minimize the number of generations of JPEG
compression between initial and final versions of an image.

There are a few specialized operations that can be done on a JPEG file without
decompressing it, and thus without incurring the generational loss that you'd
normally get from loading and re-saving the image in a regular image editor. In
particular it is possible to do 90-degree rotations and flips losslessly, if the image
dimensions are a multiple of the file's block size (typically 16x16, 16x8, or 8x8
pixels for color JPEGs). This fact used to be just an academic curiosity, but it has
assumed practical importance recently because many users of digital cameras
would like to be able to rotate their images from landscape to portrait format
without incurring loss --- and practically all digicams that produce JPEG files
produce images of the right dimensions for these operations to work. So software
that can do lossless JPEG transforms has started to pop up. But you do need
special software; rotating the image in a regular image editor won't be lossless.

It turns out that if you decompress and recompress an image at the same quality
setting first used, relatively little further degradation occurs. This means that you
can make local modifications to a JPEG image without material degradation of
other areas of the image. (The areas you change will still degrade, however.)
Counterintuitively, this works better the
lower the quality setting. But you must use *exactly* the same setting, or all bets
are off. Also, the decompressed image must be saved in a full-color format; if
you do something like JPEG=>GIF=>JPEG, the color quantization step loses lots
of information.

Unfortunately, cropping doesn't count as a local change! JPEG processes the
image in small blocks, and cropping usually moves the block boundaries, so that
the image looks completely different to JPEG. You can take advantage of the
low-degradation behavior if you are careful to crop the top and left margins only
by a multiple of the block size (typically 16

Lossy Image Compression for Continuous Tone Graphical Images

pixels), so that the remaining blocks start in the same places. (True lossless
cropping is possible under the same restrictions about where to crop, but again
this requires specialized software.)

The bottom line is that JPEG is a useful format for compact storage and
transmission of images, but you don't want to use it as an intermediate format for
sequences of image manipulation steps. Use a lossless 24-bit format (PNG, TIFF,
PPM, etc) while working on the image, then JPEG it when you are ready to file it
away or send it out on the net. If you expect to edit your image again in the
future, keep a lossless master copy to work from.

Progressive JPEG

A simple or "baseline" JPEG file is stored as one top-to-bottom scan of the image.
Progressive JPEG divides the file into a series of scans. The first scan shows the
image at the equivalent of a very low quality setting, and therefore it takes very
little space. Following scans gradually improve the quality. Each scan adds to
the data already provided, so that the total storage requirement is roughly the
same as for a baseline JPEG image of the same quality as the final scan.
(Basically, progressive JPEG is just a rearrangement of the same data into a more
complicated order.)

The advantage of progressive JPEG is that if an image is being viewed on-the-fly
as it is transmitted, one can see an approximation to the whole image very
quickly, with gradual improvement of quality as one waits longer; this is much
nicer than a slow top-to-bottom display of the image. The disadvantage is that
each scan takes about the same amount of computation to display as a whole
baseline JPEG file would. So progressive JPEG only makes sense if one has a
decoder that's fast compared to the communication link.(If the data arrives
quickly, a progressive-JPEG decoder can adapt by skipping some display passes.
Hence, those of you fortunate enough to have T1 or faster net links may not see
any difference between progressive and regular JPEG; but on a modem-speed
link, progressive JPEG is great.)

Lossless JPEG

There's a great deal of confusion on this subject, which is not surprising because
there are several different compression methods all known as "JPEG". The
commonly used method is "baseline JPEG" (or its variant "progressive JPEG").
The same ISO standard also defines a very different method called "lossless

Lossy Image Compression for Continuous Tone Graphical Images

JPEG". And if that's not confusing enough, a new lossless standard called
"JPEG-LS" is about to hit the streets.

When I say "lossless", I mean mathematically lossless: a lossless compression
algorithm is one that guarantees its decompressed output is bit-for-bit identical to
the original input. This is a much stronger claim than "visually indistinguishable
from the original". Baseline JPEG can reach visual indistinguishability for most
photo-like images, but it can never be truly lossless.

Lossless JPEG is a completely different method that really is lossless. However,
it doesn't compress nearly as well as baseline JPEG; it typically can compress
full-color data by

around 2:1. And lossless JPEG works well only on continuous-tone images. It
does not provide useful compression of palette-color images or low-bit-depth
images.

Lossless JPEG has never been popular --- in fact, no common applications
support it --- and it is now largely obsolete. (For example, the new PNG standard
outcompresses lossless JPEG on most images.) Recognizing this, the ISO JPEG
committee recently finished an all-new lossless compression standard called
JPEG-LS (you may have also heard of it under the name LOCO). JPEG-LS gives
better compression than original lossless JPEG, but still nowhere near what you
can get with a lossy method. It's anybody's guess whether this new standard will
achieve any popularity.

It's worth repeating that cranking a regular JPEG implementation up to its
maximum quality setting *does not* get you lossless storage; even at the highest
possible quality setting, baseline JPEG is lossy because it is subject to roundoff
errors in various calculations. Roundoff errors alone are nearly always too small
to be seen, but they will accumulate if you put the image through multiple cycles
of compression . Many implementations won't even let you get to the maximum
possible setting, because it's such an inefficient way to use regular JPEG. With
the IJG JPEG software, for example, you have to not only select "quality 100" but
also turn off chroma downsampling to minimize loss of information. The
resulting
files are far larger and of only fractionally better quality than files generated at
more reasonable settings. And they're still slightly lossy! If you really need
lossless storage, don't try to approximate it with regular JPEG.

Lossy Image Compression for Continuous Tone Graphical Images

The JPEG lossy compression algorithm operates in three sucessive stages
namely
• Discrete Cosine Transformation
• Coefficient Quantization
• Lossless Compression

Figure 1. JPEG LOSSY COPRESSION

These three steps combine to form a powerful compressor, capable of compressing
continuous tone images to less than 10 percent of their original size, while losing little, if
any , of their original fidelity.

DISCRETE COSINE TRANSFORM
The key to the compression process is a mathematical transformation known as
Discrete Coefficient Quantization (DCT). The DCT is a class of mathematical
operations that includes the well known Fast Fourier Transform (FFT), as well as
many others. The basic operation performed by these transforms is to take signal
and to transform it from one type of representation to another.

This transform is done frequently when analyzing digital audio samples
using the FFT. When we collect a set of sample points from an incoming audio
signal, we end up with the representation of a signal in the time domain. That is,
we have a collection of points that show what the voltage level was for the input
signal at each point in time .The FFT transforms the set of sample points into a set
of frequency values that describes exactly the same signal.

DCT
Transformatio

Coefficient
Quantization

Lossless
Compression

Lossy Image Compression for Continuous Tone Graphical Images

Figure 2 . ANALOG REPRESENTATION OF THREE SINE WAVES IN TIME
DOMAIN

Figure 3 . DATA POINTS AFTER FFT PROCESSING

Lossy Image Compression for Continuous Tone Graphical Images

 The X and Y-axes are the two dimensions of the screen. The amplitude of the
"signal" in this case is simply the value of a pixel at a particular point on the screen. For
the examples used in this chapter, that is simply an eight-bit value used to represent a
gray-scale value. So a graphical image displayed on the screen can be thought of as a
complex three-dimensional signal, with the value on the Z axis denoted by the color on
the screen at a given point. This is the spatial representation of the signal.
The DCT can be used to convert spatial information into "frequency" or "spectral"
information, with the X and Y-axes representing frequencies of the signal in two different
dimensions. And like the FFT, there is an Inverse DCT (IDCT) function that can convert
the spectral representation of the signal back to a spatial one.

DCT specifics

 The actual formula for the two-dimensional DCT is shown in figure 7, with its partner,
the IDCT, shown immediately below in figure 8. The DCT is performed on a N x N
square matrix of pixel values, and it yields an N x N square matrix of frequency
coefficients. The formula books somewhat intimidating at first glance, but it can be done
with a relatively straightforward piece of code.
To write code to implement this function, it first becomes clear that simple table lookups
can replace many terms of the equation. The two cosine terms that have to be multiplied
together only need to be calculated once at the beginning for the program, and they can
be stored for later use. Likewise, the C(x) terms that fall outside the summation loops can
also be replaced with table lookups. Once that is done, code to compute the N-by-N
portion of a display looks somewhat like that shown below:

for (i = o ; i < n ; i++)
 for (j = 0 ; j < N ; j++) {

 temp = 0.0;
 for (x = 0 ; x < N ; x++)
 for (y = 0 ; y < N ; y++) {
 temp += Cosines [x] [i] *
 Cosines [y] [j] *
 pixel [x] [y];
}
temp *= sqrt(2 * N) * Coefficients[i] [j];
DCT [i][j] = INT_ROUND(temp);
}

While this code fragment looks as though it may be somewhat interesting to a
mathematician, why anyone would want to use it on a graphical image is not immediately
obvious. After we transform the pixels to frequency coefficients, we still have just as
many points as before. It doesn't seem as if that is a particularly good way to go about

Lossy Image Compression for Continuous Tone Graphical Images

compressing data. It would be much more impressive if the DCT took an N-by-N matrix
of data and transformed it to an N/2 by N/2 matrix.

However, figure 6 provides a clue as to what the JPEG committee sees in this algorithm.
Figure 6 shows that the spectral representation of the audio waveform takes all the
information needed to describe the waveform and packs it into the three non-zero points
on the graph. So in principle we could describe the 512 points that make up the input
waveform with just three points of frequency data.

The DCT accomplishes something similar when it transform data. In the N-by-N matrix,
all the elements in row 0 have a frequency component of zero in one direction of the
signal. All the elements in column 0 have a frequency component of zero in the other
direction. As the rows and columns move away from origin, the coefficients in the
transformed DCT matrix begin to represent higher frequencies, with the highest
frequencies found at position N-1 of the matrix.

This is significant because most graphical images on our computer screens are composed
of low-frequency information. As it turns out, the components found in row and column 0
(the DC components) carry more useful information about the image than the higher-
frequency components. As we move farther away from the DC components in the
picture, we find that the coefficients not only tend to have lower values, but they become
far less important for describing the picture.

So the DCT transformation identifies pieces of information in the signal that can be
effectively "thrown away" without seriously compromising the quality of the image. It is
hard to imagine how we would do this with a picture that hadn't been transformed. With
the image still described in spatial terms, using pixels, a program would have a difficult
time figuring out which pixels are important to the overall look of the picture and which
aren't.

One of the first things that shows up when examining the DCT algorithm is that the
calculation time required for each element in the DCT is heavily dependent on the size of
the matrix. Since a doubly nested loop is used, the number of calculations is Order (N
squared): as N goes up, the amount of time required to process each element in the DCT
output array will go up dramatically.
One of the consequences of this is that it is virtually impossible to perform a DCT on an
entire image. The amount of calculation needed to perform a DCT transformation on
even a 256-by-256 gray-scale block is prohibitively large. To get around this, DCT
implementations typically break the image down into smaller, more manageable blocks.
The JPEG group selected an 8-by-8 block for the size of their DCT calculation.

Lossy Image Compression for Continuous Tone Graphical Images

While increasing the size of the DCT block would probably give better compression, it
doesn't take long to reach a point of diminishing returns. Research shows that the
connections between pixels tend to diminish quickly, such that pixels even fifteen or
twenty positions away are of very little use predictors. This means that a DCT block of
64-by-64 might not compress much better than if we broke it down into four 16-by-16
blocks. And to make matters worse, the computation time would be much longer.

While there is probably a good argument for using 16-by-16 blocks as the basis for DCT
computations, the JPEG committee elected to stick with 8-by-8. Much of this was
motivated by a desire to allow for practical implementations that could be built using
today's technology. This type of compression is referred to as "block coding."

Matrix Multiplication

The definition of the DCT shown above is a relatively straightforward, doubly nested
loop. The inner element of the loop gets executed N*N times for every DCT element that
is calculated. The inner line of the loop has two multiplication operations and a single
addition operation.
A considerably more efficient form of the DCT can be calculated using matrix
operations. To perform this operation, we first create an N-by-N matrix known as the
Cosine Transform matrix, C. This matrix is defined by the equation shown in figure 9.
Once the Cosine Transform matrix has been built, we transpose it by rotating it around
the main diagonal. This matrix is referred to in code as Ct, the Transposed Cosine
Transform matrix. Building this matrix is done only once during program initialization.
Both matrices can be built at the same time with a relatively short loop, shown below :
for (j = 0 ; j < N ; j++) {
 C[0][j] = 1.0 / sqrt(N);
 Ct[j][0] = C[0][j];
}
for (i = 1 ; i < N ; i++) {
 for (j = 0 ; j < N ; j++) {
 C[i][j] = sqrt(2.0 / N)*
 cos((2 * j + 1) * i * pi
 / (2.0 * N)) ;
 Ct[j [[i] = C[i][j];
 }
}

Once these two matrices have been built, we can take advantage of the alternate
definition of the DCT function :

DCT = C * Pixels * Ct

In this particular equation, the `*' operator refers to matrix multiplication, not normal
arithmetic multiplication. Each factor in the equation is an N-by-N matrix.

Lossy Image Compression for Continuous Tone Graphical Images

When multiplying two square matrices together, the arithmetic cost of each element of
the output matrix will be N multiplication operations and N addition operations. Since we
perform two matrix multiplications to create the DCT matrix, each element in the
transformed DCT matrix was created at the cost of 2N multiplications and additions, a
considerable improvement over the nested loop definition of the DCT used earlier.
/* MatrixMultiply(temp, input, Ct); */
 for (i = 0 ; i < N ; i++) {
 for (j = 0 ; j < N ; j++) {
 temp[i][j] = 0.0;
 for (k = 0 ; k < N ; k++)
 temp[i][j] += (pixel[i][k]) * Ct{ k]p j];
 }
}

/* MatrixMultiply(output, C, temp); */
 for (i = 0 ; i < N ; i++) {
 for (j = 0 ; j < N ; j++) {
 temp1 = 0.0;
 for (k = 0 ; k < N ; k++)
 temp1 += C[i][k] * temp[k][j];
 DCT[i][j] = temp1;
 }
}

A sample piece of code that implements the DCT via matrix arithmetic is shown above.
We note that the code is essentially nothing more than a set of two triply nested loops.
The first set of loops multiplies the transposed Cosine Transform Matrix by the input
setof pixels, creating a temporary matrix. The temporary matrix is then multiplied by the
Cosine Transform matrix, which results in the output, the DCT matrix.
Continued Improvements

The versions of the DCT presented here perform the same operations as those used in
commercial implementations, but without several more optimization steps needed to
produce JPEG compressors that operate in something approaching real time.
One improvement that can be made to the algorithm is to develop versions of the
algorithm that only use integer arithmetic. To achieve the accuracy needed for faithful
reproduction, the versions of the program tested in this project all stick with reliable
floating point math. It is possible, however, to develop versions of the DCT that use
scaled integer math, which is considerably faster on most platforms.
Since the DCT is related to the Discrete Fourier Transform, it shouldn't be surprising that
many of the techniques used to speed up the family of Fourier Transforms can also be
applied to the DCT. In fact, people all over the world are working full time on applying
Digital Signal Processing techniques to the DCT. Every cycle shaved off the time taken
to perform the transform can be worth a small fortune, so there is good incentive for these
research efforts.

Lossy Image Compression for Continuous Tone Graphical Images

Output of the DCT
Figure below shows a representative input block from a gray-scale image. As can be
seen, the input consists of an 8-by-8 matrix of pixel values which are somewhat randomly
spread around the 140 to 175 range. These integer values are fed to the DCT algorithm,
creating the output matrix shown below it.
Input Pixel matrix :

140 144 147 140 140 155 179 175
144 152 140 147 140 148 167 179
152 155 136 167 163 162 152 172
168 145 156 160 152 155 136 160
162 148 156 148 140 136 147 162
147 167 140 155 155 140 136 147
136 156 123 167 162 144 140 147
148 155 136 155 152 147 147 136

Output DCT matrix :

186 -18 15 -9 23 -9 -14 19
21 -34 26 -9 -11 11 14 7
-10 -24 -2 6 -18 3 -20 -1
-8 -5 14 -15 -8 3 -20 -1
-3 10 8 1 -11 18 18 15
4 -2 -18 8 8 -4 1 -7
9 1 -3 4 -1 -7 -1 -2
0 -8 -2 2 1 4 -6 0

The output matrix shows the spectral compression characteristic the DCT is supposed to
create. The "DC coefficient" is at position 0,0 in the upper left-hand corner of the matrix.
This value represents an average of the overall magnitude of the input matrix, since it
represents the DC component in both the X and the Y axis. We note that the DC
coefficient is almost an order of magnitude greater than any of the other values in the
DCT matrix. In addition, there is a general trend in the DCT matrix, As the elements
move farther and farther from the DC coefficient, they tend to become lower and lower in
magnitude.
This means that by performing the DCT on the input data, we have concentrated the
representation of the image in the upper left coefficients of the output matrix, with the
lower right coefficients of the DCT matrix containing less useful information. The next
section discusses how this can help compress data.

Lossy Image Compression for Continuous Tone Graphical Images

COEFFICIENT QUANTIZATION

Figure 1. Shows the JPEG compression process as a three-step procedure, the first step
being a DCT transformation. DCT is a lossless transformation that doesn't actually
perform compression. It prepares for the "lossy", or quantization, stage of the process.
The DCT output matrix takes more space to store than the original matrix of pixels. The
input to the DCT function consists of eight-bit pixel values, but the values that come out
can range from a low of -1,024 to a high of 1,023, occupying eleven bits. Something
drastic needs to happen before the DCT matrix can take up less space.
The "drastic" action used to reduce the number of bits required for storage of the DCT
matrix is referred to as "Quantization". Quantization is simply the process of reducing the
number of bits needed to store an integer value by reducing the precision of the integer.
Once a DCT image has been compressed, we can generally reduce the precision of the
coefficient more and more as we move away from the DC coefficient at the origin. The
farther away we are from 0,0, the less the element contributes to the graphical image, so
the less we care about maintaining rigorous precision in its value.
The JPEG algorithm implements Quantization using a Quantization matrix. For every
element position in the DCT matrix, a corresponding value in the quantization matrix
gives a quantum value.

The quantum value indicates wht the step size is going to be for that element in the
compressed rendition of the picture, with values ranging from one to 255.
The elements that matter most to the picture will be encoded with a small step size, size 1
offering the most precision. Values can become higher as we move away from the origin.
The actual formula for quantization is quite simple :

 Quantized Value (i, j) = DCT(i,j) / Quantum(i, j) Rounded to
nearest integer

 From the formula, it becomes clear that quantization values above twenty-five or
perhaps fifty assure that virtually all higher-frequency components will be rounded down
to zero. Only if the high-frequency coefficients get up to unusually large values will they
be encoded as non-zero values.
During decoding the dequantization formula operates in reverse :

DCT(i, j) = Quantized Value(i, j) * Quantum(i, j)

Lossy Image Compression for Continuous Tone Graphical Images

Once again, from this we can see that when you use large quantum values, you run the
risk of generating large errors in the DCT output during dequantization. Fortunately,
errors generated in the high-frequency components during dequantization normally don't
have a serious effect on picture quality.

Selecting Quantization Matrix

 Carry an enormous number of schemes could be used to define values in the quantization
matrix. At least two experimental approaches can test different quantization schemes.
One measures the mathematical error found between an input and output image after it
has been decompressed, trying to determine an acceptable level of error. A second
approach tries to judge the effect of decompression on the human eye, which may not
always correspond exactly with mathematical differences in error levels.
Since the quantization matrix can obviously be defined at runtime when compression
takes place. JPEG allows for the use of any quantization matrix; however, the ISO has
developed a standard set of quantization values supplied for use by implementers of
JPEG code. These tables are based on extensive testing by members of the JPEG
committee, and they provide a good baseline for established levels of compression.
One nice feature about selecting quantization matrices at runtime is that it is quite simple
to"dial in" a picture quality value when compressing graphics using the JPEG algorithm.
By choosing extraordinarily high step sizes for most DCT coefficients, we get excellent
compression ratios and poor picture quality. By choosing cautiously low step sizes,
compression ratios will begin to slip to not so impressive levels, but picture quality
should be excellent. This allows for a great deal of flexibility for the user of JPEG code,
choosing picture quality based on both imaging requirements and storage capacity.
The quantization tables used in the test code supplied with this program are created using
a very simple algorithm. To determine the value of the quantum step sizes, the user iputs
a single "quality factor" which should range from one to about twenty-five. Values larger
than twenty-five would work, but picture quality has degraded far enough at quality level
25 to make going any farther an exercise in futility.

for (i = 0 ; i < N ; i++)
 for (j = 0 ; j < N ; j++)
 Quantum[i][j] = 1 + ((1 + i + j) * quality);

The quality level sets the difference between adjoining bands of the same quantization
level. These bands are oriented on diagonal lines across the matrix, so quantization levels
of the same value are all roughly the same distance from the origin. An example of what
the quantization matrix looks like with a quality factor of two follows.

Lossy Image Compression for Continuous Tone Graphical Images

3 5 7 9 11 13 15 17
5 7 9 11 13 15 17 19
7 9 11 13 15 17 19 21
11 13 15 17 19 21 23 25
13 15 17 19 21 23 25 27
15 17 19 21 23 25 27 29
17 19 21 23 25 27 29 31

As a result of this configuration, the DCT coefficient at 7,7 would have to reach a value
of sixteen to be encoded as a value other than zero. This sets the threshold for the value
of an element before it is going to contribute any meaningful information to the picture.
Any contribution under the value of this threshold is simply thrown out. This is the exact
point in the algorithm where the "lossy" effect takes place. The first CT step is lossless
except for minor mathematical precision loss. And the step following quantization is a
lossless encoding step. So this is the only place where we get a chance to actually discard
data.

DCT Matrix before Quantization :

92 3 -9 -7 3 -1 0 2
-39 -58 12 17 -2 2 4 2
-84 62 1 -18 3 4 -5 5
-52 -36 -10 14 -10 4 -2 0
-86 -40 49 -7 17 -6 -2 5
-62 65 -12 -2 3 -8 -2 5
-17 14 -36 17 -11 3 3 -1
-54 32 -9 -9 22 0 1 3

DCT Matrix after Dequantizaion :

Lossy Image Compression for Continuous Tone Graphical Images

90 0 -7 0 0 0 0 0
-35 -56 9 11 0 0 0 0
-84 54 0 -13 0 0 0 0
-45 -33 0 0 0 0 0 0
-77 -39 45 0 0 0 0 0
-52 60 0 0 0 0 0 0
-15 0 -19 0 0 0 0 0
-51 19 0 0 0 0 0 0

Figure above shows the effects of the quantization on a DCT matrix. The
quantization/dequantization cycle has readily apparent effects. The high-frequency
portions of the matrix have for the most part been truncated down to zero, eliminating
their effect on the decompressed image. The coefficient in the matrix that are close to the
DC coefficient may have been modified, but only by small amounts.
The interesting thing is that while we appear to be making wholesale changes to the
saved image, quality factor 2 makes only minor changes that are barely noticeable. Yet
the cleaning of so many of the coefficients allows the image to be compressed by 60
percent, even in the very simple compression program used in this project

Color quantization

Many people don't have full-color (24 bit per pixel) display hardware.
Inexpensive display hardware stores 8 bits per pixel, so it can display at most 256
distinct colors at a time. To display a full-color image, the computer must choose
an appropriate set of representative colors and map the image into these colors.
This process is called "color quantization". (This is something of a misnomer;
"color selection" or "color reduction" would be a better term. But we're stuck
with the standard usage.)

Clearly, color quantization is a lossy process. It turns out that for most images,
the details of the color quantization algorithm have *much* more impact on the
final image quality than do any errors introduced by JPEG itself (except at the
very lowest JPEG quality settings). Making a good color quantization method is a
black art, and no single algorithm is best for all images.

Since JPEG is a full-color format, displaying a color JPEG image on 8-bit-or-less
hardware requires color quantization. The speed and image quality of a JPEG
viewer running on such hardware are largely determined by its quantization

Lossy Image Compression for Continuous Tone Graphical Images

algorithm. Depending on whether a quick-and-dirty or good-but-slow method is
used, you'll see great variation in image quality
among viewers on 8-bit displays, much more than occurs on 24-bit displays.

On the other hand, a GIF image has already been quantized to 256 or fewer
colors. (A GIF always has a specific number of colors in its palette, and the
format doesn't allow more than 256 palette entries.) GIF has the advantage that
the image maker precomputes the color quantization, so viewers don't have to;
this is one of the things that make GIF viewers
faster than JPEG viewers. But this is also the *disadvantage* of GIF: one is stuck
with the image maker's quantization. If the maker quantized to a different number
of colors than what one can display, one will either waste display capability or
else have to requantize to reduce the number of colors (which usually results in
much poorer image quality than

quantizing once from a full-color image). Furthermore, if the maker didn't use a
high-quality color quantization algorithm, you're out of luck --- the image is
ruined.

For this reason, JPEG promises significantly better image quality than GIF for all
users whose machines don't match the image maker's display hardware. JPEG's
full color image can be quantized to precisely match the viewer's display
hardware. Furthermore, one will be able to take advantage of future
improvements in quantization algorithms, or purchase better display hardware, to
get a better view of JPEG images one already has.

A closely related problem is seen in many current World Wide Web browsers:
when running on an 8-bit display, they force all images into a pre-chosen palette.
(They do this to avoid having to worry about how to allocate the limited number
of available color slots among the various items on a Web page.) A GIF version
of a photo usually degrades very badly in this
situation, because it's effectively being forced through a second quantization step.
A JPEG photo won't look wonderful either, but it will look less bad than the GIF
equivalent because it's been quantized only once.

A growing number of people have better-than-8-bit display hardware already: 15-
or 16-bit/pixel "high color" displays are now quite common, and true 24-bit/pixel
displays are no longer rare. For these people, GIF is already obsolete, as it cannot
represent an image to the full capabilities of their display. JPEG images can drive
these displays much more effectively.

In short, JPEG is an all-around better choice than GIF for representing
photographic images in a machine-independent fashion.

Lossy Image Compression for Continuous Tone Graphical Images

It's sometimes thought that a JPEG converted from a GIF shouldn't require color
quantization. That is false; even when you feed a 256-or-less-color GIF into
JPEG, what comes out of the decompressor is not 256 colors, but thousands of
colors. This happens because JPEG's lossiness affects each pixel a little
differently, so two pixels that started with identical colors will usually come out
with slightly different colors. Considering the whole image, each original color
gets "smeared" into a cluster of nearby colors. Therefore quantization is always
required to display a color JPEG on a colormapped display, regardless of the
image source.

The same effect makes it nearly meaningless to talk about the number of colors
used by a JPEG image. Even if you tried to count the number of distinct pixel
values, different JPEG decoders would give you different results because of
roundoff error differences. JPEGs can be classified as color or gray-scale, but
number of colors just isn't a useful concept for JPEG, any more than it is for a real
photograph.

Lossy Image Compression for Continuous Tone Graphical Images

SCOPE OF FUTURE WORK
 The JPEG algorithm is applicable only to still images or pictures. This process
can be extended to moving pictures or images. This algorithm can be used in case
of MPEG. The algorithm will be same as that of JPEG with the subroutine being
called for each frame of the moving picture. A still better approach will be to
calculate the difference between the two frames and then to apply the JPEG
subroutine to the difference of the two images. In the project a bitmap is being
read and the values are written down in a text format or a non-formatted gray
scale file on which the algorithm is applied.

JPEG is only for still images. Nonetheless, one will frequently see references to
"motion JPEG" or "M-JPEG" for video. *There is no such standard*. Various
vendors have applied JPEG to individual frames of a video sequence, and have
called the result "M-JPEG". Unfortunately, in the absence of any recognized
standard, they've each done it differently. The resulting files are usually not
compatible across different vendors.

MPEG is the recognized standard for motion picture compression. It uses many
of the same techniques as JPEG, but adds inter-frame compression to exploit the
similarities that usually exist between successive frames. Because of this, MPEG
typically compresses a video sequence by about a factor of three more than "M-
JPEG" methods can for similar quality.
The disadvantages of MPEG are
• It requires far more computation to generate the compressed sequence (since

detecting visual similarities is hard for a computer),
• It's difficult to edit an MPEG sequence on a frame-by-frame basis (since each

frame is intimately tied to the ones around it). This latter problem has made
"M-JPEG" methods rather popular for video editing products.

Lossy Image Compression for Continuous Tone Graphical Images

References

• THE DATA COMPRESSION BOOK MARK NELSON & JEAN-LOUP GAILLY
• PROGRAMMING IN ANSI C RITCHIE
• LET US C YASHWANT KANITKAR
• IMAGE PROCESSING A.GONSALEZ
1.

	INTRODUCTION
	DESIGN
	REQUIREMENTS

	JPEG COMPRESSION
	USE OF JPEG
	How well does JPEG compress images
	"Quality" settings for JPEG
	Loss accumulatation with repeated compression/decompression
	Progressive JPEG
	Lossless JPEG
	DISCRETE COSINE TRANSFORM
	DCT specifics

	COEFFICIENT QUANTIZATION
	Selecting Quantization Matrix

	Color quantization
	SCOPE OF FUTURE WORK

